Comparison of Two Data Assimilation Methods for Improving MODIS LAI Time Series for Bamboo Forests
نویسندگان
چکیده
Bamboo forests, especially the Moso bamboo forest (MBF) and the Lei bamboo forest (LBF), have a strong carbon sequestration capability and play an important role in the global forest carbon cycle. The leaf area index (LAI) is an important structural parameter for simulating the spatiotemporal pattern of the carbon cycle in bamboo forests. However, current LAI products suffer from substantial noise and errors, and data assimilation methods are the most appropriate way to improve the accuracy of LAI data. In this study, two data assimilation methods (the Dual Ensemble Kalman filter (DEnKF) and Particle filter (PF) methods) were applied to improve the quality of MODIS LAI time-series data, which removed noises and smoothed the results using a locally adjusted cubic-spline capping method for the MBF and LBF during 2014–2015. The method with the highest correlation coefficient (r) and lowest root-mean-square error (RMSE) was used to generate highly accurate LAI products of bamboo forests in Zhejiang Province. The results show that the LAI assimilated using two methods saw greatly reduced fluctuations in the MODIS LAI product for both the MBF and the LBF. The LAI assimilated using DEnKF significantly correlated with the observed LAI, with an r value of 0.90 and 0.95, and an RMSE value of 0.42 and 0.42, for the MBF and the LBF, respectively. The PF algorithm achieved a better accuracy than the DEnKF algorithm, with an average increase in r of 8.78% and an average decrease in the RMSE of 33.33%. Therefore, the PF method was applied for LAI assimilation in Zhejiang Province, and the assimilated LAI of bamboo forests achieved a reasonable spatiotemporal pattern in Zhejiang Province. The PF algorithm greatly improves the accuracy of MODIS LAI products and provides a reliable structural parameter for the large-scale simulation of the carbon cycle in bamboo forest ecosystems.
منابع مشابه
Sequential Method with Incremental Analysis Update to Retrieve Leaf Area Index from Time Series MODIS Reflectance Data
High-quality leaf area index (LAI) products retrieved from satellite observations are urgently needed for crop growth monitoring and yield estimation, land-surface process simulation and global change studies. In recent years, sequential assimilation methods have been increasingly used to retrieve LAI from time series remote-sensing data. However, the inherent characteristics of these sequentia...
متن کاملRegional winter wheat yield prediction by integrating MODIS LAI into the WOFOST model with sequential assimilation technique
In this study, a regional winter wheat yield prediction method was developed by integration of time series of Moderate-Resolution Imaging Spectroradiometer MODIS LAI products (MOD15A2) with WOrld FOod STudies (WOFOST) model through Ensemble Kalman Filter (EnKF) algorithm at the regional scale in the Hengshui District, Hebei province in China. WOFOST model was selected as the crop growth dynamic...
متن کاملThe Impact of Potential Land Cover Misclassification on MODIS Leaf Area Index (LAI) Estimation: A Statistical Perspective
Understanding the impact of vegetation mixture and misclassification on leaf area index (LAI) estimation is crucial for algorithm development and the application community. Using the MODIS standard land cover and LAI products, global LAI climatologies and statistics were obtained for both pure and mixed pixels to evaluate the effects of biome mixture on LAI estimation. Misclassification between...
متن کاملEvaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison
The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MOD...
متن کاملTime-series validation of MODIS land biophysical products in a Kalahari woodland, Africa
Monthly measurements of leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (fAPAR) taken at approximately monthly intervals were collected along three 750 m transects in a Kalahari woodland near Mongu in western Zambia. These data were compared with MODIS NDVI (MOD13, Collection 3) and MODIS LAI and fAPAR products (MOD15, Collection 3) over a 2 year period (2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017